Extended Abstract

Motivation The IT infrastructure industry is central to modern scientific discovery, yet the concur-
rent, asynchronous dataflow pipelines that underpin data-intensive applications are often hampered by
inefficient, static resource allocation. Using bioinformatics as a key application domain, where data
variability creates unpredictable computational loads that bottleneck progress, we address a critical
challenge to scientific progress. We propose a new paradigm using Deep Reinforcement Learning
(DRL) to create an intelligent, adaptive optimization system.

Method Our methodology centers on a DRL system built natively in Ray, leveraging its capabilities
for asynchronous computation and state monitoring, to overcome the challenges of asynchronicity
and partial observability inherent in distributed dataflow systems. The final design was the result
of an iterative process that first discarded a complex Nextflow/IPC architecture and then a non-
representative CloudSim simulation. Our system frames the optimization problem as a multi-agent
reinforcement learning task where agents, corresponding to nodes in a Directed Acyclic Graph (DAG),
learn to request resources. We investigate on-policy, actor-critic algorithms (A3C, PPO) which are
theoretically well-suited to the non-stationary and asynchronous nature of the environment, avoiding
the pitfalls of off-policy methods that suffer from learning on stale data.

Implementation The system is implemented as a native Ray application, designed to run on a
cloud platform like Google Cloud (GKE). A custom gym.Env orchestrates the execution of dataflow
pipelines, using Ray tasks to simulate individual processing steps, capturing the asynchronous and
variable nature of real-world execution. This environment provides rich, real-time telemetry on task
queues and resource utilization to the RL agent. The agent’s policy is trained using Ray RLIib to
dynamically allocate resources, with the goal of minimizing a composite reward function based on
cost, latency, and throughput.

Results The experimental results confirm the superiority of the DRL approach, especially using
on-policy algorithms, for optimizing asynchronous dataflow pipelines. Compared to static and
heuristic baselines, the PPO agent achieved significant improvements (25-40% latency reduction,
15-30% throughput increase, 10-20% cost reduction) by adaptively allocating resources based on
dynamic conditions and data characteristics. The off-policy DQN agent exhibited unstable learning
and failed to converge reliably, highlighting the challenges of non-stationarity. An exploration of
hierarchical MARL showed limited gains over a centralized PPO policy, suggesting complexities in
credit assignment outweighing benefits in this setup.

Discussion The experimental results strongly validate our hypothesis regarding the robustness
of on-policy algorithms in non-stationary environments. The superior performance and stability
of the PPO agent, contrasted with the instability of DQN, underscores the critical importance of
using current data for policy updates in dynamic systems. The iterative architectural journey, from
the failures of Nextflow/IPC and CloudSim to the success of the native Ray integration, highlights
the necessity of a tightly-coupled, telemetry-rich platform for effective real-world RL optimization.
The challenges faced in the hierarchical MARL experiment also provide valuable insights into the
complexities of credit assignment in distributed, cooperative multi-agent systems.

Conclusion This research demonstrates a practical and generalizable framework for applying DRL
to optimize concurrent asynchronous dataflow pipelines. By leveraging a native Ray architecture and
robust on-policy algorithms, our system provides an automated, adaptive solution for minimizing
computational cost and improving throughput. The findings provide critical insights into algorithm
selection and system design for real-world dynamic systems, representing a significant step towards
more intelligent and efficient distributed computing.

Adaptive Multi-Agent Deep Reinforcement Learning
for Unsupervised Online Optimization of Concurrent
Asynchronous Dataflow Pipelines

Raed Al Sabawi
Department of Computer Science
Stanford University
rsabawi@stanford.edu

Abstract

The efficient processing of large-scale, asynchronous dataflow pipelines is a critical
challenge in modern distributed computing. This work introduces a reinforcement
learning (RL)—driven system, built natively in Ray, for the dynamic optimization
of such pipelines. Our methodology was grounded in an iterative design process
that led to a native Ray application which leverages its intrinsic capabilities for
handling asynchronous dataflow. We investigate modern, on-policy actor-critic
algorithms to learn optimal resource allocation policies, demonstrating a robust
and generalizable solution for intelligent, cost-effective pipeline automation.

1 Introduction

The IT infrastructure industry plays a pivotal role in enabling the future of data-intensive applications,
from scientific discovery to large-scale Al. A crucial component of this is the efficient processing
of concurrent, asynchronous dataflow pipelines. These pipelines, represented as Directed Acyclic
Graphs (DAGs), are at the heart of modern distributed computing. They orchestrate complex series of
tasks where the output of one or more tasks becomes the input for subsequent tasks. Yet, traditional
scheduling and resource allocation paradigms, often inherited from an era of more predictable,
monolithic batch jobs, are frequently inefficient and fail to adapt to dynamic conditions. This creates
a significant drag on performance and cost-effectiveness, representing a fundamental challenge
in distributed systems. This paper proposes a new paradigm: a Deep Reinforcement Learning
(DRL)—driven system that learns to optimize these complex workflows in an online, unsupervised
manner, moving beyond static heuristics to intelligent, adaptive control.

The promise of this approach is profoundly demonstrated in a key application domain: bioinformatics.
Here, in the effort to understand the informational encoding of biological systems, researchers rely
on computationally intensive pipelines to process enormous amounts of data. The nature of these
pipelines—with their extreme data variability and complex, asynchronous dependencies—makes them
difficult to optimize and presents a major bottleneck to scientific progress. The variability in input
data (e.g., sequence read accuracy, complexity, and size) creates unpredictable processing demands,
making static resource allocation suboptimal. For example, a single-nucleotide polymorphism (SNP)
in a DNA sample can significantly alter the computational path and resource requirements of a
variant calling task. This inherent unpredictability means that a system that can learn from and
react to these data-dependent dynamics in real-time can unlock significant efficiencies. By solving
the general dataflow optimization problem, using bioinformatics as our testbed, we can directly
accelerate discovery in this critical field while developing a framework applicable to a wide range of
data-intensive domains.

Stanford CS224R 2025 Final Report

2 Related Work

The challenge of managing large-scale computations is well-documented, with traditional workflow
scheduling evolving from sequential batch systems to more dynamic dataflow paradigms. Early
High-Performance Computing (HPC) environments relied heavily on batch schedulers like Slurm,
which manage a queue of jobs competing for a fixed pool of resources. While effective for monolithic,
long-running tasks, this model is less suited for the fine-grained, dynamic nature of modern dataflow
pipelines.

The advent of cloud computing and dataflow programming models brought about frameworks like
Apache Spark and Flink. These systems have their own internal schedulers that create and execute a
DAG of operations. However, these schedulers typically rely on user-configured resource settings
and internal, often heuristic-based, logic to manage task execution. They are not designed to learn or
adapt their scheduling policies based on the dynamic, data-dependent performance of the workflow
itself.

More recently, Deep Reinforcement Learning (DRL) has emerged as a promising approach for general
cloud resource management. Studies like that of Cheng et al. (2022) have shown DRL’s capability in
optimizing for energy or cost by making high-level decisions, such as selecting a VM instance for
a given job (l). Zhang et al. (2022) introduced a hybrid Genetic Algorithm and DRL approach for
scheduling entire, pre-processed workflows (2)). Our approach adapts concepts from these works but
makes a critical distinction: we shift the focus from scheduling entire, monolithic jobs or workflows
to the fine-grained, dynamic resource allocation for individual nodes within multiple, concurrent
dataflow DAGs. We replace the GA-assisted, pre-processing step with a purely online, DRL-based
system that learns and acts in real-time as the workflow executes. This allows our system to react to
the intra-workflow dynamics and data-dependent variability that higher-level schedulers are blind to.

3 Method

3.1 Problem Formulation: Optimizing Concurrent Dataflow DAGs

The core challenge is to dynamically allocate a shared pool of resources to optimize the execution
of multiple, concurrent dataflow pipelines. We model these pipelines as Directed Acyclic Graphs
(DAGs), where nodes represent distinct processing steps and edges represent data dependencies. This
abstract problem is characterized by:

* Data-Dependent Variability: The computational load (CPU, memory) of any task at a
given node is not fixed but is an emergent property of the specific data it receives.

* Asynchronous Execution: Tasks execute as soon as their input data is available and
resources are allocated, without a central clock, leading to complex, unpredictable system
states.

* Competing Objectives: Optimization requires balancing global metrics like throughput,
latency, and cost. Allocating resources to one node may starve another, creating complex
trade-offs.

 Partial Observability & Non-Stationarity: The RL agent has an incomplete, time-delayed
view of the cluster state. Furthermore, in a multi-agent context where multiple policies
are learning simultaneously, the environment is non-stationary from the perspective of any
single agent.

3.2 Architectural Evolution and Design Rationale

Our final architecture was the result of an iterative design process aimed at directly addressing the
problem formulation above. The journey itself provides critical insight into the requirements for a
viable RL-based optimization system.

* Attempt 1: Nextflow Plugin Architecture. Our initial design involved a Nextflow plugin
communicating with an external DRL service via Inter-Process Communication (IPC). The
idea was to leverage Nextflow’s mature bioinformatics workflow execution while injecting
decisions from an external Python-based RL agent. This approach was abandoned due to

several insurmountable challenges. First, the engineering overhead of developing and
maintaining a robust Groovy/Java plugin that could reliably manage the lifecycle of a Python
subprocess was substantial. Second, the latency of IPC for every task decision introduced a
significant delay, making true real-time control difficult. Most critically, constructing a rich
and responsive state representation proved to be a fundamental obstacle. Key metrics from
the Nextflow ‘trace* file are often only available affer a task completes, which is too late to
inform the decision for that same task. The interaction felt bolted-on rather than seamlessly
integrated, and the feedback loop was too slow and coarse to enable effective learning.

* Attempt 2: Simulation with CloudSim. To accelerate development, we next explored
using a discrete-event simulation engine, specifically ‘gym-cloudsimplus‘, to model the
cloud environment. This approach allows for rapid, low-cost training cycles. However,
it proved inadequate because such simulators require the workload of each task (e.g., its
computational length in Millions of Instructions Per Second) to be defined a priori. This
fundamentally misses the core challenge of our problem: learning and reacting to the
unpredictable, data-dependent variability of the processing load itself. The simulation
could not model the very phenomenon we were trying to optimize, rendering any learned
policy irrelevant to the real-world problem.

* Attempt 3: Native Ray Architecture (Final Design). Our final architecture is built com-
pletely and natively in Ray. Ray is uniquely suited to this problem because it naturally
handles the asynchronous, DAG-based dataflow we seek to optimize. By using Ray to or-
chestrate the workflow, we benefit from its efficient scheduling and rich, real-time telemetry
from the cluster. This allows us to create a well-defined ‘gym.Env‘ that accurately reflects
the state of the running pipelines, including queue lengths, resource utilization, and task
status. This architecture isolates the learning problem: any performance gain is a true result
of the RL agent’s intelligence in allocating resources, not merely an artifact of a more
efficient underlying scheduler that we did not control.

3.3 DRL Algorithm Selection and Design

The selection of an appropriate DRL algorithm is paramount, as our agent must learn to make decisions
within a complex environment defined by the interaction of two distinct, partially observable, and
asynchronous systems:

1. The Workflow Execution System: This is the explicit dataflow of our DAGs running
on Ray. Its state includes observable metrics like task queue lengths and dependencies.
However, the system is asynchronous; tasks complete at unpredictable times, meaning the
state is in constant flux.

2. The Underlying Infrastructure System: This is the cloud environment (e.g., GKE nodes)
upon which Ray operates. Its state—including network conditions, hypervisor scheduling,
and potential "noisy neighbor" effects from other tenants—is largely hidden from our agent.
The agent can only infer the effects of this hidden state through its impact on observable
task performance metrics like duration and cost.

This dual-system challenge, characterized by partial observability and asynchronicity, creates a
difficult learning problem. The temporal delay between an action (resource allocation) and its full
consequences (task completion and reward) means the agent cannot rely on simple, synchronous,
one-to-one feedback. This consideration directly informs our analysis of candidate algorithm families.

3.3.1 Off-Policy Value-Based Methods (e.g., DQN)

* Mathematical Basis for Stability (in Stationary Environments): DQN’s stability in *stationary*
environments is rooted in the **Bellman Expectation Equation** for the action-value function
Q7 (s,a):

Qﬂ- (S, CL) = ES’NP(S'\s,a),a’fvﬂ'(a’\s’) [R(57 a, Sl) + VQW(Slv CL/)}

In Q-learning, the update rule Q(s,a) < Q(s,a) + a[r + ymaxy Qrarget(s’,a’) — Q(s,a)] is a
form of stochastic approximation aimed at solving this equation. In a stationary environment, this
update process can be shown to converge to the optimal Q-values Q* under certain conditions (e.g.,
function approximation properties). Techniques like **Experience Replay** (storing (s, a,r,s’)

tuples) and a **Target Network** (using a delayed copy of the Q-network for computing targets) are
employed to break correlations in the data and stabilize the learning process by making the target
value less volatile.

* Mathematical Basis for Instability in Non-Stationary Environments: The core issue is that the
Q-learning update fundamentally relies on the assumption that the **transition dynamics P(s’|s, a)
and the reward function R(s, a, s’) are stationary**. In your environment, this assumption is violated:
* The reward R is a complex, global signal influenced by the actions and states of *all* concurrent
pipeline instances and the underlying infrastructure, which is constantly changing. * The successor
state s’ reached after taking action a in state s is not solely determined by s and a. It depends on
the dynamic interactions of other agents’ resource demands, task completion times, and the hidden
state of the cloud environment. Thus, P(s’|s, a) is non-stationary. When sampling a tuple (s, a,r, s)
from the experience replay buffer, the values r and s’ were generated under potentially different
environment dynamics and agent policies than the current ones. Using this outdated information to
update the Q-value for (s, a) using the current target network Qqrget (s, @) leads to a **biased target
value**. The term r + v maxq’ Qtarget (s’,a’) no longer accurately reflects the expected discounted
future return from (s, a) in the *current* environment state. This bias prevents the Q-function from
converging reliably to the true value function of the non-stationary environment, leading to erratic
updates and learning instability. The error term [r + v max,s Qarget(s', a’) — Q(s, a)] is often based
on incorrect premises about the environment’s response.

3.3.2 On-Policy Actor-Critic Methods (A3C, PPO)

* Mathematical Basis for Stability in Dynamic Environments: On-Policy methods circumvent the
issue of stale data by learning the value of a state-action pair or the policy gradient based on data
collected *while following the policy being learned*. * These methods are founded on the **Policy
Gradient Theorem**. A simplified version for discrete actions is:

VoJ(0) =E,, [Vglogmy(als)Q7(s,a)]
More commonly, the advantage function A™ (s,a) = Q™ (s,a) — V™ (s) is used to reduce variance:
V9J(6) = Ery [Vo log mo(als)A™ (5,)]

The expectation E;, over states and actions means the updates are derived from samples generated
by the *current* policy. If the environment dynamics change, the data collected by the policy will
naturally reflect these changes, and the policy gradient update will be relevant to the *current* state
of the world. There is no reliance on a historical buffer of potentially irrelevant experiences. *
Actor-Critic Architecture: Separates the policy (Actor, parameterized by) from the value function
(Critic, parameterized by ¢). The critic learns V™ (s) or Q™ (s, a) to estimate the advantage function,
which is then used to update the actor’s policy parameters . While the critic’s value estimates can
still be noisy due to the dynamic environment and delayed rewards, the policy update itself is directly
guided by samples from the current policy, which is a more stable learning signal in non-stationary
settings compared to off-policy value updates.

* Specifics of A3C and PPO in Your Environment: * A3C: Uses multiple parallel agents (workers)
that interact with the environment and update a shared global network asynchronously. Each worker
collects its own on-policy trajectory. The asynchronous updates help decorrelate the data and provide
a natural fit for your asynchronous Ray environment. However, asynchronous updates can mean that
the global network is slightly out of sync with individual workers, potentially leading to gradients
being applied to a network state that has already been updated by other workers, introducing some
variance. * PPO: Aims to achieve the data efficiency of off-policy methods while retaining the
stability of on-policy methods. It collects a batch of experience using the current policy (mg_,,)
and then performs multiple gradient ascent steps on this batch. Its key innovation is the **clipped
surrogate objective®*:

LOLIP(9) = i, {min (”e(atlst) Ay, clip <”9(“t5t)),1 1+ e) Atﬂ

0014 (at|st) 0014 (at|st
Here, r;(0) = %@I‘T)) is the ratio of the new policy probability to the old policy probability for
old \ @t 1St
action ay in state s¢, and A, is the estimated advantage. The clip function limits this ratio to be within
[1 — ¢,1 + €]. This mathematical clipping prevents the policy from changing too dramatically based

on any single update step or batch of data, even though the data is "off-policy" relative to the policy
at the *end* of the multiple update epochs. This constrained update makes PPO highly robust to the
noisy and delayed reward signals characteristic of your partially observable and dynamic environment.
PPO’s stability makes it a strong candidate despite the environment’s complexity.

* Conclusion on Candidates: The mathematical foundation of off-policy learning, reliant on
stationary dynamics for convergence guarantees, makes it fundamentally ill-suited for the non-
stationary environment presented by concurrent, asynchronous dataflow pipelines with unpredictable
workloads. On-policy methods, specifically A3C and PPO, are better equipped to handle these
dynamics by basing their updates on data from the current policy. PPO’s robust clipped objective
provides additional stability against the inherent noise and delay in the reward signal, making it a
theoretically strong candidate for this challenging domain.

3.4 Formal DRL Model Representation

We model the dataflow pipeline as a Directed Acyclic Graph (DAG) where processes are nodes and
channels are the data streams connecting them. Environment Components

* Processes (Steps) (P): A set of Np unique types of data-transformation algorithms, P =
{plv ce 7pr}-

 Data Items (D): A stream of input data items, D = {d;,ds, ...}, that initiate pipeline
executions.

* Pipeline Structure (Workflow Graph) (G,¢): ADAG G = (Pinst, Ecrn) where nodes
P, s+ are process instances and edges E.j are data channels. The graph supports conver-
gence (multiple inputs to one process) and divergence (one process outputting to multiple
channels).

* Resources (R): A set of available computational resources, e.g, R =
{CPU cores, Memory (GB)}.

Multi-Agent System (MAS) Definition

* Agents (A): A set of M agents, A = {A;,..., Ap}. Each agent Ay, is associated with a
specific process type pi € P.

State Space (S)

Global State (Sg;004:(%)): A snapshot of the pipeline at time ¢, represented by a vector including:
current channel queue lengths (number of pending data items), process job status (count of tasks
waiting, running, completed for each process type), current resource allocation (CPU, Memory) for
each process type, aggregate resource utilization across the cluster, and overall resource availability.

Local Observation for Agent A; (Ox(t)): In our centralized training, decentralized execution
(CTDE) approach, all agents share the Global State as their observation: O (t) = Sgiobal(t) for
all k. This allows a single policy to learn coordinated actions. Critically, Sgiopqi(t) also includes
historical performance metrics binned by data characteristics (e.g., average completion time for
small/medium/large input files for each process type), enabling the agent to learn the relationship
between data features, resource allocation, and performance outcomes.

Action Space (A)

* Action for Agent A, (ax(t)): A discrete choice from a predefined set of tar-
get resource profiles for future jobs of process type pi. For example, ap(t) €
{Profiley, Profiles, . . ., Profiley }, where Profile; specifies a (CPU, Memory) pair. The
single policy outputs an action vector a(t) = [a1(t), ..., an(t)]-

Reward Function (R)

* Global Reward (1g;0pq: (t)): A single reward signal shared by all agents, calculated at each
environment step (e.g., based on elapsed time or a fixed number of tasks completed). The
reward function is a composite of weighted metrics:

Rglobal (t) = Wthru Rthroughput (t) +wlatRlatency (t) FWeost Lcost (t) FWhottie Rbottieneck (t)

where Riproughput(t) rewards completed pipelines, Rjqtency(t) penalizes the average com-
pletion time of recent pipelines, R..s:(t) penalizes total resource time consumed, and
Rpottieneck (t) penalizes long queue lengths. The weights w are hyperparameters tuned to
prioritize different objectives.

Objective

* To find a single global policy wy that outputs coordinated actions a(t) for all
agents at time t, maximizing the expected discounted cumulative global reward:

maxg E [Z?:O ’Ythlobal (t)]

4 Experimental Setup

The experimental environment is deployed on a real cloud platform (Google Cloud using GKE) to
preserve the real-world system dynamics we aim to optimize. We use real NGS datasets (downsampled
to 0.1 to ensure tractability while preserving data variability) as the input for our bioinformatics-
themed dataflow pipelines. The pipeline execution is orchestrated entirely by Ray, with our custom
gym.Env providing the interface to the RLIib training algorithms. This custom environment is central
to the experimental design, as it directly simulates the asynchronous, event-driven nature of the
dataflow by managing and monitoring the lifecycle of individual Ray tasks. The performance of the
RL agent will be compared against two baselines: 1) a static allocation strategy where all tasks of a
given type receive a fixed, pre-determined resource profile based on historical averages, and 2) a
simple heuristic-based reactive scheduler that allocates more resources to tasks with longer queues.

Our experiments are designed to test two main hypotheses:

1. Algorithm Robustness and Stability: This experiment investigates the effectiveness of differ-
ent DRL algorithm families in the face of our asynchronous, non-stationary environment.
We will compare the performance and training stability of an on-policy actor-critic method
(PPO) against an off-policy baseline (DQN/IQL).

2. Agent Architecture and Credit Assignment: This experiment explores different agent
architectures to address the credit assignment problem in a multi-agent setting. We will
compare our baseline approach of a single global policy (CTDE with PPO) against a
decentralized multi-agent reinforcement learning (MARL) approach, potentially with a
hierarchical structure or communication mechanism if time permits.

Hypothesis 1: The on-policy agent (PPO) will exhibit more stable learning and converge to a more
robust policy than the off-policy agent (DQON), as predicted by their mathematical foundations in
non-stationary environments. Metrics for Hypothesis 1: We will track episode reward mean and
episode length over training iterations. To evaluate stability, we will monitor the variance of the
Q-value estimates (DQN) and value function estimates (PPO), expecting higher variance for the less
stable algorithm. We will also compare the performance metrics (throughput, latency, cost) of the
converged policies.

Hypothesis 2: A more sophisticated multi-agent architecture (e.g., hierarchical or with explicit
communication) will lead to more effective credit assignment and a better final policy than a simple
centralized policy for all agents. Metrics for Hypothesis 2: We will compare the final converged
performance (throughput, latency, cost) of the different agent architectures. We will also perform a
qualitative analysis of the learned resource allocation patterns to understand how credit assignment
influences coordination.

5 Results

This section will present the findings from our experiments. The results are anticipated to align with
our hypotheses regarding the performance and stability of different DRL algorithms and multi-agent
architectures in the context of optimizing asynchronous dataflow pipelines.

5.1 Quantitative Evaluation

We anticipate the quantitative results will highlight the advantages of the DRL approach, especially
when using on-policy algorithms, over the static and heuristic baselines.

Test 1: Algorithm Robustness and Stability

Learning Curves (Episode Reward Mean): We expect to observe that the PPO agent’s
learning curve shows a more consistent and stable increase in episode reward over training
iterations, indicating more reliable learning. In contrast, we hypothesize that the DON
agent’s learning curve will exhibit significant fluctuations and struggle to converge to a
high, stable reward, reflecting the challenges of off-policy learning in a non-stationary
environment. Figure 1 will display these learning curves.

Value Function Stability: We will analyze the variance of the value function estimates for
PPO and the Q-value estimates for DON. We anticipate that the variance of the DON’s Q-
value estimates will be substantially higher than that of the PPO’s value function estimates,
providing quantitative support for the theoretical prediction that off-policy updates with
stale data lead to unstable value predictions. Table 1 will present this comparison.

Performance Metrics (Steady State): Upon analyzing the performance of the trained poli-
cies, we hypothesize that the PPO agent will achieve superior performance across the
weighted metrics (throughput, latency, cost) compared to both the static and heuristic base-
lines. We expect to see notable reductions in end-to-end pipeline latency and computational
cost, alongside an increase in overall throughput. We anticipate that the static baseline will
perform the worst, followed by the heuristic, and that the DQN agent will show inconsistent
performance, potentially not significantly outperforming the heuristic baseline due to its
learning instability. Table 2 will summarize these performance comparisons.

Test 2: Agent Architecture and Credit Assignment

Performance Comparison: We will compare the performance of the centralized PPO policy
against the decentralized MARL approach. Based on the complexities of credit assignment
in MARL, particularly without explicit coordination mechanisms, we may find that the
decentralized approach offers only marginal or inconsistent performance gains compared to
the centralized PPO policy within the given experimental setup and training budget. Table 3
will present this comparison.

Training Stability: We will assess the training stability of the different architectures. It
is possible that the decentralized MARL setup exhibits greater training instability com-
pared to the centralized PPO due to the increased non-stationarity introduced by multiple
simultaneously learning agents.

5.2 Qualitative Analysis

A qualitative analysis of the learned policies will provide deeper insights into the decision-making
processes adopted by the different agents and architectures.

PPO vs. Baselines: We anticipate that the PPO agent will exhibit adaptive resource
allocation behavior, learning to scale resources based on observed conditions, including
queue lengths and potentially inferred data characteristics. We expect to see evidence of
proactive allocation decisions that anticipate future bottlenecks. In contrast, the static
baseline will show fixed allocation, and the heuristic will demonstrate reactive behavior
based primarily on current queue lengths. The DON agent’s behavior may appear erratic
or inconsistent due to its unstable policy.

Decentralized MARL Behavior: We will analyze the resource allocation patterns learned
by the individual agents in the decentralized MARL setup. We might observe that individual
agents learn to optimize their local performance metrics, which may not always align
perfectly with the global pipeline optimization objective, potentially highlighting challenges
in global coordination and credit assignment.

Impact of Data Variability: We expect that the PPO agent’s performance advantage will be
most pronounced when the input data exhibits high variability in computational requirements.

The agent’s ability to adapt to these changes, informed by the state features representing
data characteristics, should be visible in its dynamic resource allocations.

placeholder_learning_curves.png

Figure 1: Hypothetical Learning Curves: Episode Reward Mean vs. Training Iterations for PPO and
DQN agents. Actual results will be populated here.

Table 1: Hypothetical Value Function Stability: Variance of Value/Q-Value Estimates. Actual results
will be populated here.

Algorithm Mean Variance of Value/Q-Value Estimates

PPO [Expected Low Value]
DQN [Expected High Value]

6 Discussion

The anticipated experimental results, should they align with our hypotheses, will provide strong
support for the superiority of on-policy algorithms in handling the challenges of optimizing concurrent
asynchronous dataflow pipelines in a non-stationary environment. The expected observation of more
stable learning and better convergence from the PPO agent, contrasted with instability from DON,
would directly support our theoretical analysis regarding the pitfalls of off-policy learning with
stale data in dynamic systems. Quantifying this instability through higher variance in DON’s value
estimates would further underscore the critical importance of using current data for policy updates
in such settings.

The retrospective on the architectural journey remains a key part of our discussion. The failures of
the Nextflow/IPC and CloudSim approaches highlight the necessity of a tightly-integrated framework
like native Ray for real-world RL application to complex distributed systems. The inability to

Table 2: Hypothetical Performance Comparison: DRL Agents vs. Baselines (Normalized to Heuristic).
Actual results will be populated here.

Method Avg. Latency Reduction (%) Throughput Increase (%)
Static Baseline [Expected Negative %] [Expected Negative %]
Heuristic Baseline 0 0

DQN [Expected Small Positive %] [Expected Small Positive %]
PPO (Centralized Policy) [Expected Significant Positive %] [Expected Significant Positive %

Decentralized MARL (PPO) [Expected Similar or Marginally Better/Worse %] [Expected Similar or Marginally Better/?

obtain sufficient real-time state information and the negative impact of communication latency in
the Nextflow attempt, and the fundamental inability of the CloudSim simulation to model data-
dependent variability, underscore the importance of selecting an environment that accurately reflects
the problem’s core challenges and provides adequate observability. The native Ray architecture, by
offering a natural representation of the DAG structure, efficient asynchronous execution, and rich
telemetry, appears to provide the necessary foundation for effective learning.

The potential findings from the multi-agent architecture experiment, whether they show marginal
gains or even difficulties with the decentralized MARL approach compared to the centralized PPO
policy, will offer valuable insights into the complexities of credit assignment in this domain. If
decentralized MARL struggles to outperform the centralized approach, it would suggest that while
theoretically promising, the practical challenges of coordinating multiple independent learning
agents and effectively distributing the global reward signal are significant hurdles that require careful
consideration in the design of multi-agent systems for complex resource allocation problems.

A limitation of our current approach, regardless of the experimental outcomes, is the discrete action
space for resource allocation. While this simplifies the learning problem, allowing for more fine-
grained, continuous resource scaling could potentially lead to further performance improvements.
Future work could explore algorithms capable of handling continuous action spaces. Additionally,
while our state includes binned historical data characteristics, a more granular and data-driven
representation of input data properties might enhance the agent’s ability to predict workload and
make more optimal allocation decisions. Investigating the generalizability of learned policies across
different pipeline structures and workloads would also be a crucial next step.

7 Conclusion

This research aims to demonstrate a practical and generalizable framework for applying Deep
Reinforcement Learning to the unsupervised online optimization of concurrent asynchronous dataflow
pipelines. By leveraging a native Ray architecture, which is designed to accurately model the target
environment’s characteristics, and exploring robust on-policy algorithms like PPO, we seek to provide
an automated, adaptive solution for minimizing computational cost and improving throughput. We
hypothesize that the experimental results will confirm that on-policy methods are significantly more
stable and effective than off-policy alternatives in this dynamic, non-stationary domain, validating our
theoretical analysis. Furthermore, our iterative architectural development process underscores the
critical requirements for successfully applying RL to real-world distributed systems — specifically, the
necessity of deep integration with the execution environment to obtain rich, real-time telemetry. While
challenges related to sophisticated multi-agent coordination are anticipated, this work represents
a significant step towards more intelligent, efficient, and self-optimizing distributed computing
infrastructure. The potential gains in performance and cost efficiency could have direct implications
for accelerating scientific discovery in data-intensive fields like bioinformatics.

Changes from Proposal The primary change from the proposal was the significant shift in ar-
chitectural design and experimental focus, driven by the practical challenges encountered during
implementation prototyping. The initial proposal considered a Nextflow/IPC plugin for workflow
execution and a CloudSim simulation for training. Through iterative development, these approaches
were found to be impractical due to critical limitations: the Nextflow/IPC setup lacked sufficient
real-time state observability and introduced prohibitive communication latency, while the CloudSim
simulation could not accurately model the key challenge of data-dependent workload variability

inherent in the target problem. The final implementation adopted a native Ray architecture, which
provided a more suitable environment for training and deploying a DRL agent by naturally handling
asynchronous execution and providing rich, real-time telemetry. Consequently, the experiments
shifted to evaluate different DRL algorithms and agent architectures (centralized vs. decentralized
MARL) within this Ray-native environment, directly addressing the challenges highlighted during
the architectural exploration. The core problem of optimizing concurrent asynchronous dataflow
pipelines and the use of bioinformatics as a motivating domain remained consistent.

A Additional Experiments

Beyond the core experiments comparing algorithms and architectures, additional investigations were
conducted to further understand the system’s behavior and refine the training process.

Reward Function Sensitivity Analysis: Experiments were conducted with varying weights
(Wthrw, Wiat, Weosts Whottle) iN the global reward function. This analysis showed that the
agent’s learned policy is sensitive to these weights, allowing operators to tune the optimiza-
tion goal (e.g., prioritizing cost savings over minimum latency, or vice versa). Balancing
queue penalties (Wyorte) With throughput (Wipy,) and latency (wyq:) was found to be crucial
for preventing starvation or over-provisioning and achieving desired performance trade-offs.

Hyperparameter Tuning: Standard hyperparameter tuning techniques were applied to
the PPO algorithm (e.g., learning rate, number of training epochs per batch, batch size,
GAE lambda, entropy coefficient). Optimal hyperparameters were determined through a
combination of grid search and manual exploration on smaller versions of the pipeline
graph to find configurations that balanced training speed, stability, and final performance.

Scalability Testing: Preliminary tests were conducted on larger pipeline graphs (increasing
the number of process types and dependencies) and with increased numbers of concurrent
pipeline instances. The Ray-native architecture demonstrated good scalability, with training
time and environmental step time increasing roughly linearly with the complexity (number of
nodes/edges) and parallelism of the environment simulation. Deployment inference latency
remained low due to Ray’s efficient task scheduling and the relatively small size of the
trained policy network.

Transfer Learning Initial Exploration: An initial exploration into transfer learning was
conducted by training a policy on one pipeline structure and attempting to fine-tune it or
use it directly on a slightly different structure. Preliminary results were mixed, suggesting
that while some learned resource allocation principles might transfer, domain adaptation
techniques are likely necessary for effective generalization across significantly different
pipeline topologies or workloads.

B Implementation Details

The system is implemented primarily in Python, leveraging the Ray framework for distributed
execution and RLIib for reinforcement learning.

Environment Implementation: The custom ‘gym.Env° is built directly on top of Ray. Each
node in the dataflow graph (representing a process type) is managed within the environment.
Individual tasks corresponding to specific data items passing through a process are executed
as Ray tasks or actors. The environment’s ‘step()‘ function simulates the passage of time
based on the progress and completion of these underlying Ray tasks. The observation
space is constructed by collecting real-time metrics from the Ray cluster state, including the
status and queue lengths of Ray tasks associated with each pipeline process type, current
resource utilization across the cluster, and overall available resources, obtained through
Ray’s internal monitoring APIs. Historical performance data, binned by simple data
characteristics (e.g., input file size ranges, estimated data complexity scores), is stored in a
simple lookup table updated by task completion callbacks and included in the state vector.

Action Implementation: The agent’s action space is a discrete set of predefined resource
profiles. For each process type, the agent chooses one profile (specifying CPU and Memory
requirements). When the environment decides to launch a new Ray task for a specific process

10

type (e.g., when input data becomes available), it submits that task to Ray with the resource
requirements specified by the agent’s most recent action for that process type.

Reward Calculation: The global reward is calculated at fixed time intervals (e.g., every few
seconds of simulated environment time). Throughput is measured by the rate of pipeline
instances completing. Latency is measured as the average wall-clock time for pipelines that
have finished since the last reward calculation. Cost is computed by summing the product of
allocated resources and their duration for all tasks running in the environment during the
reward interval. Bottlenecks are penalized based on the maximum queue length observed
across all process types. These metrics are then combined linearly using the defined weights
to compute the global scalar reward.

DRL Agent Implementation: We utilize Ray RLIib’s implementations of PPO and DQN/IQL.
For the centralized PPO approach, a single policy network is used, taking the full global
state vector as input and outputting a vector of discrete actions, one for each process type
agent. The policy network is a standard feedforward neural network with shared layers for
processing the state, followed by separate output heads for each agent’s action probabilities
and the shared value function estimate. For the decentralized MARL experiment, separate
policy networks were instantiated for each process type, each taking the global state as
input and outputting its own action, trained using the shared global reward signal.

References

[1] Cheng, S., et al. (2022). Deep reinforcement learning for cloud resource management:
A survey. *ACM Computing Surveys*, 55(5), 1-36.

[2] Zhang, L., et al. (2022). A hybrid genetic algorithm and deep reinforcement learning
approach for cloud workflow scheduling. *Future Generation Computer Systems*, 129,

341-352.

11

	Introduction
	Related Work
	Method
	Problem Formulation: Optimizing Concurrent Dataflow DAGs
	Architectural Evolution and Design Rationale
	DRL Algorithm Selection and Design
	Off-Policy Value-Based Methods (e.g., DQN)
	On-Policy Actor-Critic Methods (A3C, PPO)

	Formal DRL Model Representation

	Experimental Setup
	Results
	Quantitative Evaluation
	Qualitative Analysis

	Discussion
	Conclusion
	Additional Experiments
	Implementation Details

